Dietary guidelines and nutrition labels guide public food choices, yet individual needs vary. This study aims to develop a personalized food recommendation algorithm based on nutrient profiles. I compared spectrum clustering and k-means clustering, finding k-means to be superior. This document outlines the methods, analyses, and practical applications of these findings.
Diet significantly impacts health outcomes, from cardiovascular disease (Shanta Retelny, Neuendorf, and Roth 2008) to cognitive function (Dani, Burrill, and Demmig-Adams 2005). However, many people struggle with unhealthy eating habits, often due to an overabundance of food choices. Improving dietary decisions through better food groupings could help mitigate this issue.
Existing nutrition datasets categorize foods, but the methods are unclear, leading to inconsistencies in nutrient profiles within groups. This study reinterprets food groupings, aiming to create clusters that better align with individual dietary needs. Specifically, the results can be used to identify foods with the optimal combination of nutrients tailored to a person’s dietary requirements.
This analysis of public nutrient datasets aims to develop an algorithm that recommends foods based on nutrient profiles, identifying clusters with high intra-group and low inter-group similarity.
I used the Canadian Nutrient File (2015) dataset, containing nutrient values for over 5690 foods. After merging datasets by unique identifiers, I ran exploratory analyses. Despite some redundant and missing data, I opted for mean imputation to handle missing values, ensuring consistency in subsequent analyses.
I compared k-means and spectrum clustering to group foods by nutrient profiles, aiming for high intra-group similarity and low inter-group similarity. The silhouette method was used to identify optimal cluster numbers, and data were standardized before analysis.
Using the silhouette method, 2 clusters were identified (see appendix). K-means clustering resulted in a high proportion of total sum of squares explained by between-cluster sum of squares, indicating good cluster separation.
A scree plot guided the selection of 10 principal components (PCs) for spectrum clustering. K-means clustering on these PCs produced 8 clusters (see appendix). The plot below shows the 8 clusters formed using spectrum clustering across the first two PCs, with labels for the centroid of each cluster.
K-means outperformed spectrum clustering, as evidenced by higher silhouette width and Dunn index scores, suggesting better-defined clusters.
To explore the ‘intelligent’ clusters created through k-means clustering, we plotted word clouds of the most commonly used words within each cluster. For instance, the first word cloud shows that the most frequently used word in cluster 1 was ‘raw,’ followed by ‘frozen,’ ‘boiled,’ and ‘canned.’ This suggests that the cluster is defined by how a food is stored or cooked. In terms of specific foods, ‘cereal’ is frequently mentioned, along with other sugary foods.
The word cloud for the second cluster shows that ‘raw’ is also frequently used in this cluster. Notably, a larger proportion of the foods in this cluster are related to meat and high-protein foods, such as ‘meat,’ ‘lean,’ ‘fat,’ and ‘fish.’
We also explored which group had the highest calorie content, finding that cluster 2 had a noticeably higher calorie content compared to cluster 1. Therefore, if someone is focused on reducing their overall calorie intake, it may be advisable to avoid foods found in cluster 2.
After determining the best clustering approach based on food nutrient profiles, I provide a case study to illustrate how this tool can be used to make recommendations for a person with specific dietary needs.
Arnold is an aspiring professional bodybuilder interested in gaining muscle as quickly as possible. Understanding the importance of nutrition in muscle building, he plans to adjust his diet to achieve this goal, following the guidance he found here and here. Arnold, currently weighing 180 pounds, aims to consume 1.5 grams of protein per pound of bodyweight, which totals 270 grams of protein daily. Additionally, it is recommended that he consumes between 2-3 grams of carbohydrates per pound, equating to 360-540 grams of total carbohydrates per day. Finally, he should intake at least 3600 kilocalories daily to support muscle gain. Arnold also seeks to consume several other nutrients at levels above 2 standard deviations above the mean due to their muscle-building properties, including calcium, biotin, iron, vitamin C, selenium, Omega-3, vitamin D, vitamin B12, copper, magnesium, riboflavin, and zinc.
To simulate Arnold’s dietary needs, I created a dataset from my main analyses and compared Arnold’s daily nutrient targets to the daily nutrient recommendations for someone in the general population who matches him in all characteristics except activity level. I used the DRI Calculator for Healthcare Professionals from the National Argicultural Library to determine a point of comparison for Arnold’s nutrient intake. This tool calculates daily nutrient recommendations based on the Dietary Reference Intakes (DRIs) established by the Health and Medicine Division of the National Academies of Sciences, Engineering, and Medicine. I input gender (male), age (20), height (5 feet 10 inches), weight (180 pounds), and activity level (sedentary) for someone matching Arnold in all characteristics except activity level, as Arnold will have a higher activity level than the typical person. Therefore, the nutrient recommendations from this tool represent someone who matches Arnold in all characteristics but does not aspire to be a professional bodybuilder (and hence has a lower activity level). I then compared Arnold’s nutrient goals to these recommendations. For example, Arnold aims to consume 3600 kilocalories per day, compared to the recommended 2734 kilocalories for someone less active. Thus, Arnold is consuming approximately 1.32 times the recommended kilocalories. Similarly, Arnold will consume 1.2 times the recommended carbohydrates, 4.15 times the recommended total carbohydrates, 270 times the recommended saturated fats, and 10.8 times the recommended total fat. I created nutrient data for Arnold by multiplying the average value of each target nutrient across the dataset by the amount Arnold is consuming above the mean (e.g., 1.32 * average value of nutrient across all foods) for kilocalories, total carbohydrates, saturated fats, protein, and total fat. For the nutrients Arnold aims to consume at least 2 standard deviations above the mean (i.e., calcium, biotin, iron, vitamin C, selenium, Omega-3, vitamin D, vitamin B12, copper, magnesium, riboflavin, and zinc), I calculated and inserted the value representing 2 standard deviations above the mean into Arnold’s nutrient data.
Next, I identified the cluster that most closely matched Arnold’s nutrient needs by finding the cluster with the smallest Euclidean distance from Arnold’s goal nutrient profile. My analyses indicated that Arnold would best achieve his goals by eating foods in cluster 2. After identifying the cluster that best fit Arnold, I identified the foods with the smallest Euclidean distance from the center of cluster 2 in the original dataset to provide recommendations for the top 10 foods that meet Arnold’s target nutrient profile. The table below clearly shows that Arnold should focus on meats and fish to achieve his goal of becoming a professional bodybuilder.
| Food | Distance |
|---|---|
| Duck, young duckling, domestic, White Pekin, breast, meat and skin, boneless, roasted | 2.57 |
| Fish, butterfish, baked or broiled | 2.57 |
| Veal, rib, lean and fat, roasted | 2.59 |
| Veal, shoulder, shank, lean and fat, roasted | 2.60 |
| Chicken, broiler, meat, skin, giblets and neck, batter dipped, fried | 2.67 |
| Chicken, roasting, meat, skin, giblets and neck, roasted | 2.68 |
| Chicken, broiler, drumstick, meat and skin, batter dipped, fried | 2.69 |
| Chicken, roasting, meat and skin, roasted | 2.70 |
| Veal, sirloin, lean and fat, roasted | 2.71 |
| Veal, ground, broiled | 2.73 |
Contrary to our expectations, k-means clustering provided better results than spectrum clustering. Our case study illustrates how these clusters can inform dietary choices, such as optimizing nutrient intake for muscle gain.
The dataset’s average nutrient values and focus on Canadian products limit generalizability. Additionally, nutrient values are standardized, requiring portion size adjustments for practical use. Future work could expand these analyses to other countries and explore food-specific goals.
Dimensions: 5690 x 151
Duplicates: 0
| No | Variable | Stats / Values | Freqs (% of Valid) | Graph | Missing |
|---|---|---|---|---|---|
| 1 | PROTEIN [numeric] |
Mean (sd) : 11.1 (10.8) min < med < max: 0 < 7.6 < 85.6 IQR (CV) : 16.6 (1) |
2261 distinct values | 0 (0.0%) |
|
| 2 | FAT (TOTAL LIPIDS) [numeric] |
Mean (sd) : 10 (16.7) min < med < max: 0 < 3.8 < 100 IQR (CV) : 11.6 (1.7) |
1913 distinct values | 0 (0.0%) |
|
| 3 | CARBOHYDRATE, TOTAL (BY DIFFERENCE) [numeric] |
Mean (sd) : 22 (26.5) min < med < max: 0 < 10.3 < 100 IQR (CV) : 31.6 (1.2) |
2756 distinct values | 0 (0.0%) |
|
| 4 | ASH, TOTAL [numeric] |
Mean (sd) : 1.9 (3.5) min < med < max: 0 < 1.2 < 99.8 IQR (CV) : 1.2 (1.8) |
647 distinct values | 0 (0.0%) |
|
| 5 | ENERGY (KILOCALORIES) [numeric] |
Mean (sd) : 219 (174) min < med < max: 0 < 174 < 902 IQR (CV) : 240 (0.8) |
665 distinct values | 0 (0.0%) |
|
| 6 | ALCOHOL [numeric] |
Mean (sd) : 0.1 (1.8) min < med < max: 0 < 0 < 42.5 IQR (CV) : 0 (14.3) |
38 distinct values | 0 (0.0%) |
|
| 7 | MOISTURE [numeric] |
Mean (sd) : 55 (31) min < med < max: 0 < 64.7 < 100 IQR (CV) : 50.3 (0.6) |
3417 distinct values | 0 (0.0%) |
|
| 8 | CAFFEINE [numeric] |
Mean (sd) : 3.9 (97.8) min < med < max: 0 < 0 < 5714 IQR (CV) : 0 (24.9) |
62 distinct values | 0 (0.0%) |
|
| 9 | THEOBROMINE [numeric] |
Mean (sd) : 7 (74.8) min < med < max: 0 < 0 < 2634 IQR (CV) : 0 (10.7) |
131 distinct values | 0 (0.0%) |
|
| 10 | ENERGY (KILOJOULES) [numeric] |
Mean (sd) : 915 (727) min < med < max: 0 < 727 < 3774 IQR (CV) : 1006 (0.8) |
1659 distinct values | 0 (0.0%) |
|
| 11 | SUGARS, TOTAL [numeric] |
Mean (sd) : 7.7 (13.6) min < med < max: 0 < 3 < 99.8 IQR (CV) : 7.7 (1.8) |
1506 distinct values | 0 (0.0%) |
|
| 12 | FIBRE, TOTAL DIETARY [numeric] |
Mean (sd) : 2.4 (4.7) min < med < max: 0 < 1 < 79 IQR (CV) : 2.7 (1.9) |
238 distinct values | 0 (0.0%) |
|
| 13 | CALCIUM [numeric] |
Mean (sd) : 76.9 (219) min < med < max: 0 < 25 < 7364 IQR (CV) : 63 (2.8) |
469 distinct values | 0 (0.0%) |
|
| 14 | IRON [numeric] |
Mean (sd) : 2.6 (5.6) min < med < max: 0 < 1.1 < 124 IQR (CV) : 2.1 (2.2) |
883 distinct values | 0 (0.0%) |
|
| 15 | MAGNESIUM [numeric] |
Mean (sd) : 39.7 (63.6) min < med < max: 0 < 22 < 781 IQR (CV) : 26.7 (1.6) |
303 distinct values | 0 (0.0%) |
|
| 16 | PHOSPHORUS [numeric] |
Mean (sd) : 168 (233) min < med < max: 0 < 136 < 9918 IQR (CV) : 172 (1.4) |
621 distinct values | 0 (0.0%) |
|
| 17 | POTASSIUM [numeric] |
Mean (sd) : 308 (441) min < med < max: 0 < 240 < 16500 IQR (CV) : 208 (1.4) |
896 distinct values | 0 (0.0%) |
|
| 18 | SODIUM [numeric] |
Mean (sd) : 333 (1214) min < med < max: 0 < 83 < 38758 IQR (CV) : 335 (3.6) |
1100 distinct values | 0 (0.0%) |
|
| 19 | ZINC [numeric] |
Mean (sd) : 1.6 (3) min < med < max: 0 < 0.9 < 91 IQR (CV) : 1.7 (1.8) |
696 distinct values | 0 (0.0%) |
|
| 20 | COPPER [numeric] |
Mean (sd) : 0.2 (0.6) min < med < max: 0 < 0.1 < 15.1 IQR (CV) : 0.2 (2.8) |
788 distinct values | 0 (0.0%) |
|
| 21 | MANGANESE [numeric] |
Mean (sd) : 0.6 (3.5) min < med < max: 0 < 0.2 < 133 IQR (CV) : 0.6 (5.8) |
1227 distinct values | 0 (0.0%) |
|
| 22 | SELENIUM [numeric] |
Mean (sd) : 14.6 (34.3) min < med < max: 0 < 10 < 1917 IQR (CV) : 16.7 (2.4) |
615 distinct values | 0 (0.0%) |
|
| 23 | RETINOL [numeric] |
Mean (sd) : 88.8 (802) min < med < max: 0 < 0 < 30000 IQR (CV) : 27 (9) |
327 distinct values | 0 (0.0%) |
|
| 24 | BETA CAROTENE [numeric] |
Mean (sd) : 292 (1610) min < med < max: 0 < 2 < 42891 IQR (CV) : 120 (5.5) |
613 distinct values | 0 (0.0%) |
|
| 25 | ALPHA-TOCOPHEROL [numeric] |
Mean (sd) : 1.2 (3.5) min < med < max: 0 < 0.6 < 149 IQR (CV) : 1 (3) |
448 distinct values | 0 (0.0%) |
|
| 26 | VITAMIN D (INTERNATIONAL UNITS) [numeric] |
Mean (sd) : 23.9 (226) min < med < max: 0 < 0 < 12716 IQR (CV) : 18 (9.5) |
215 distinct values | 0 (0.0%) |
|
| 27 | VITAMIN D (D2 + D3) [numeric] |
Mean (sd) : 0.6 (5.9) min < med < max: 0 < 0 < 318 IQR (CV) : 0.4 (9.4) |
130 distinct values | 0 (0.0%) |
|
| 28 | VITAMIN C [numeric] |
Mean (sd) : 8.2 (52.3) min < med < max: 0 < 0.2 < 1900 IQR (CV) : 4.6 (6.4) |
459 distinct values | 0 (0.0%) |
|
| 29 | THIAMIN [numeric] |
Mean (sd) : 0.2 (0.5) min < med < max: 0 < 0.1 < 23.4 IQR (CV) : 0.2 (2.5) |
813 distinct values | 0 (0.0%) |
|
| 30 | RIBOFLAVIN [numeric] |
Mean (sd) : 0.2 (0.4) min < med < max: 0 < 0.1 < 17.5 IQR (CV) : 0.2 (2) |
710 distinct values | 0 (0.0%) |
|
| 31 | NIACIN (NICOTINIC ACID) PREFORMED [numeric] |
Mean (sd) : 3.1 (4.3) min < med < max: 0 < 1.8 < 128 IQR (CV) : 4.3 (1.4) |
2829 distinct values | 0 (0.0%) |
|
| 32 | TOTAL NIACIN EQUIVALENT [numeric] |
Mean (sd) : 5.2 (5.5) min < med < max: 0 < 3.9 < 132 IQR (CV) : 6.9 (1.1) |
3909 distinct values | 0 (0.0%) |
|
| 33 | PANTOTHENIC ACID [numeric] |
Mean (sd) : 0.6 (0.9) min < med < max: 0 < 0.6 < 21.9 IQR (CV) : 0.5 (1.3) |
1317 distinct values | 0 (0.0%) |
|
| 34 | VITAMIN B-6 [numeric] |
Mean (sd) : 0.2 (1) min < med < max: 0 < 0.1 < 68.8 IQR (CV) : 0.2 (4.3) |
757 distinct values | 0 (0.0%) |
|
| 35 | TOTAL FOLACIN [numeric] |
Mean (sd) : 37.7 (89.9) min < med < max: 0 < 14 < 3786 IQR (CV) : 32.7 (2.4) |
291 distinct values | 0 (0.0%) |
|
| 36 | VITAMIN B-12 [numeric] |
Mean (sd) : 1.1 (6.5) min < med < max: 0 < 0.1 < 380 IQR (CV) : 1 (5.9) |
900 distinct values | 0 (0.0%) |
|
| 37 | VITAMIN K [numeric] |
Mean (sd) : 20.8 (74.6) min < med < max: 0 < 20.8 < 1714 IQR (CV) : 19.4 (3.6) |
435 distinct values | 0 (0.0%) |
|
| 38 | FOLIC ACID [numeric] |
Mean (sd) : 8.4 (48.4) min < med < max: 0 < 0 < 2993 IQR (CV) : 0 (5.7) |
161 distinct values | 0 (0.0%) |
|
| 39 | TRYPTOPHAN [numeric] |
Mean (sd) : 0.1 (0.1) min < med < max: 0 < 0.1 < 1.6 IQR (CV) : 0.1 (0.8) |
459 distinct values | 0 (0.0%) |
|
| 40 | THREONINE [numeric] |
Mean (sd) : 0.5 (0.4) min < med < max: 0 < 0.5 < 3.7 IQR (CV) : 0.5 (0.8) |
1301 distinct values | 0 (0.0%) |
|
| 41 | ISOLEUCINE [numeric] |
Mean (sd) : 0.6 (0.4) min < med < max: 0 < 0.6 < 5 IQR (CV) : 0.5 (0.8) |
1370 distinct values | 0 (0.0%) |
|
| 42 | LEUCINE [numeric] |
Mean (sd) : 1 (0.7) min < med < max: 0 < 1 < 7.2 IQR (CV) : 0.9 (0.8) |
1835 distinct values | 0 (0.0%) |
|
| 43 | LYSINE [numeric] |
Mean (sd) : 0.9 (0.8) min < med < max: 0 < 0.9 < 5.8 IQR (CV) : 0.9 (0.9) |
1699 distinct values | 0 (0.0%) |
|
| 44 | METHIONINE [numeric] |
Mean (sd) : 0.3 (0.2) min < med < max: 0 < 0.3 < 3.2 IQR (CV) : 0.3 (0.8) |
860 distinct values | 0 (0.0%) |
|
| 45 | CYSTINE [numeric] |
Mean (sd) : 0.2 (0.1) min < med < max: 0 < 0.2 < 2.1 IQR (CV) : 0.1 (0.8) |
496 distinct values | 0 (0.0%) |
|
| 46 | PHENYLALANINE [numeric] |
Mean (sd) : 0.5 (0.4) min < med < max: 0 < 0.5 < 5.2 IQR (CV) : 0.4 (0.7) |
1275 distinct values | 0 (0.0%) |
|
| 47 | TYROSINE [numeric] |
Mean (sd) : 0.4 (0.3) min < med < max: 0 < 0.4 < 3.3 IQR (CV) : 0.4 (0.8) |
1132 distinct values | 0 (0.0%) |
|
| 48 | VALINE [numeric] |
Mean (sd) : 0.6 (0.5) min < med < max: 0 < 0.6 < 6.2 IQR (CV) : 0.5 (0.8) |
1429 distinct values | 0 (0.0%) |
|
| 49 | ARGININE [numeric] |
Mean (sd) : 0.8 (0.7) min < med < max: 0 < 0.8 < 7.4 IQR (CV) : 0.8 (0.9) |
1627 distinct values | 0 (0.0%) |
|
| 50 | HISTIDINE [numeric] |
Mean (sd) : 0.4 (0.3) min < med < max: 0 < 0.4 < 2.3 IQR (CV) : 0.3 (0.8) |
1076 distinct values | 0 (0.0%) |
|
| 51 | ALANINE [numeric] |
Mean (sd) : 0.7 (0.5) min < med < max: 0 < 0.7 < 8 IQR (CV) : 0.6 (0.8) |
1490 distinct values | 0 (0.0%) |
|
| 52 | ASPARTIC ACID [numeric] |
Mean (sd) : 1.2 (0.9) min < med < max: 0 < 1.2 < 10.2 IQR (CV) : 1 (0.8) |
1937 distinct values | 0 (0.0%) |
|
| 53 | GLUTAMIC ACID [numeric] |
Mean (sd) : 2.4 (10.1) min < med < max: 0 < 2.4 < 757 IQR (CV) : 1.7 (4.3) |
2433 distinct values | 0 (0.0%) |
|
| 54 | GLYCINE [numeric] |
Mean (sd) : 0.6 (0.6) min < med < max: 0 < 0.6 < 19 IQR (CV) : 0.6 (0.9) |
1439 distinct values | 0 (0.0%) |
|
| 55 | PROLINE [numeric] |
Mean (sd) : 0.7 (0.5) min < med < max: 0 < 0.7 < 12.3 IQR (CV) : 0.5 (0.8) |
1420 distinct values | 0 (0.0%) |
|
| 56 | SERINE [numeric] |
Mean (sd) : 0.5 (0.4) min < med < max: 0 < 0.5 < 6.1 IQR (CV) : 0.4 (0.7) |
1289 distinct values | 0 (0.0%) |
|
| 57 | CHOLESTEROL [numeric] |
Mean (sd) : 41.5 (136) min < med < max: 0 < 2 < 3100 IQR (CV) : 59 (3.3) |
292 distinct values | 0 (0.0%) |
|
| 58 | FATTY ACIDS, TRANS, TOTAL [numeric] |
Mean (sd) : 0.3 (1.1) min < med < max: 0 < 0.3 < 37.6 IQR (CV) : 0.2 (3.6) |
499 distinct values | 0 (0.0%) |
|
| 59 | FATTY ACIDS, SATURATED, TOTAL [numeric] |
Mean (sd) : 3.1 (5.7) min < med < max: 0 < 1.3 < 95.6 IQR (CV) : 3.3 (1.8) |
2813 distinct values | 0 (0.0%) |
|
| 60 | FATTY ACIDS, SATURATED, 8:0, OCTANOIC [numeric] |
Mean (sd) : 0 (0.2) min < med < max: 0 < 0 < 7.5 IQR (CV) : 0 (6) |
267 distinct values | 0 (0.0%) |
|
| 61 | FATTY ACIDS, SATURATED, 10:0, DECANOIC [numeric] |
Mean (sd) : 0 (0.2) min < med < max: 0 < 0 < 6 IQR (CV) : 0 (4.4) |
351 distinct values | 0 (0.0%) |
|
| 62 | FATTY ACIDS, SATURATED, 12:0, DODECANOIC [numeric] |
Mean (sd) : 0.2 (1.5) min < med < max: 0 < 0 < 47 IQR (CV) : 0.2 (7.7) |
449 distinct values | 0 (0.0%) |
|
| 63 | FATTY ACIDS, SATURATED, 14:0, TETRADECANOIC [numeric] |
Mean (sd) : 0.2 (0.8) min < med < max: 0 < 0.1 < 22.8 IQR (CV) : 0.2 (3.3) |
788 distinct values | 0 (0.0%) |
|
| 64 | FATTY ACIDS, SATURATED, 16:0, HEXADECANOIC [numeric] |
Mean (sd) : 1.7 (2.6) min < med < max: 0 < 0.9 < 43.5 IQR (CV) : 1.8 (1.6) |
2323 distinct values | 0 (0.0%) |
|
| 65 | FATTY ACIDS, SATURATED, 18:0, OCTADECANOIC [numeric] |
Mean (sd) : 0.8 (1.6) min < med < max: 0 < 0.4 < 33.2 IQR (CV) : 0.8 (1.9) |
1676 distinct values | 0 (0.0%) |
|
| 66 | FATTY ACIDS, MONOUNSATURATED, 18:1undifferentiated,
OCTADECENOIC [numeric] |
Mean (sd) : 3.5 (6.8) min < med < max: 0 < 1.4 < 82.6 IQR (CV) : 3.4 (1.9) |
2709 distinct values | 0 (0.0%) |
|
| 67 | FATTY ACIDS, POLYUNSATURATED, 18:2undifferentiated, LINOLEIC,
OCTADECADIENOIC [numeric] |
Mean (sd) : 1.8 (4.4) min < med < max: 0 < 0.5 < 74.6 IQR (CV) : 1.7 (2.4) |
2080 distinct values | 0 (0.0%) |
|
| 68 | FATTY ACIDS, POLYUNSATURATED, 18:3undifferentiated, LINOLENIC,
OCTADECATRIENOIC [numeric] |
Mean (sd) : 0.2 (1.2) min < med < max: 0 < 0.1 < 53.4 IQR (CV) : 0.2 (5.6) |
690 distinct values | 0 (0.0%) |
|
| 69 | FATTY ACIDS, POLYUNSATURATED, 20:4, EICOSATETRAENOIC [numeric] |
Mean (sd) : 0 (0.1) min < med < max: 0 < 0 < 1.8 IQR (CV) : 0 (2.3) |
262 distinct values | 0 (0.0%) |
|
| 70 | FATTY ACIDS, POLYUNSATURATED, 22:6 n-3, DOCOSAHEXAENOIC (DHA) [numeric] |
Mean (sd) : 0 (0.5) min < med < max: 0 < 0 < 18.2 IQR (CV) : 0 (9.5) |
297 distinct values | 0 (0.0%) |
|
| 71 | FATTY ACIDS, MONOUNSATURATED, 16:1undifferentiated,
HEXADECENOIC [numeric] |
Mean (sd) : 0.2 (0.9) min < med < max: 0 < 0.1 < 18.9 IQR (CV) : 0.2 (3.7) |
771 distinct values | 0 (0.0%) |
|
| 72 | FATTY ACIDS, POLYUNSATURATED, 18:4, OCTADECATETRAENOIC [numeric] |
Mean (sd) : 0 (0.1) min < med < max: 0 < 0 < 3 IQR (CV) : 0 (8.4) |
127 distinct values | 0 (0.0%) |
|
| 73 | FATTY ACIDS, POLYUNSATURATED, 20:5 n-3, EICOSAPENTAENOIC (EPA) [numeric] |
Mean (sd) : 0 (0.4) min < med < max: 0 < 0 < 13.2 IQR (CV) : 0 (8.5) |
260 distinct values | 0 (0.0%) |
|
| 74 | FATTY ACIDS, MONOUNSATURATED, 22:1undifferentiated, DOCOSENOIC [numeric] |
Mean (sd) : 0 (0.7) min < med < max: 0 < 0 < 41.2 IQR (CV) : 0 (14.8) |
200 distinct values | 0 (0.0%) |
|
| 75 | FATTY ACIDS, POLYUNSATURATED, 22:5 n-3, DOCOSAPENTAENOIC (DPA) [numeric] |
Mean (sd) : 0 (0.2) min < med < max: 0 < 0 < 5.6 IQR (CV) : 0 (10.9) |
163 distinct values | 0 (0.0%) |
|
| 76 | FATTY ACIDS, MONOUNSATURATED, TOTAL [numeric] |
Mean (sd) : 3.9 (7.6) min < med < max: 0 < 1.4 < 83.7 IQR (CV) : 4.2 (1.9) |
2881 distinct values | 0 (0.0%) |
|
| 77 | FATTY ACIDS, POLYUNSATURATED, TOTAL [numeric] |
Mean (sd) : 2.2 (5.1) min < med < max: 0 < 0.7 < 74.6 IQR (CV) : 2 (2.3) |
2382 distinct values | 0 (0.0%) |
|
| 78 | NATURALLY OCCURRING FOLATE [numeric] |
Mean (sd) : 29.2 (71.9) min < med < max: 0 < 11 < 2340 IQR (CV) : 24.2 (2.5) |
262 distinct values | 0 (0.0%) |
|
| 79 | RETINOL ACTIVITY EQUIVALENTS [numeric] |
Mean (sd) : 115 (817) min < med < max: 0 < 5 < 30000 IQR (CV) : 43 (7.1) |
464 distinct values | 0 (0.0%) |
|
| 80 | DIETARY FOLATE EQUIVALENTS [numeric] |
Mean (sd) : 44.4 (114) min < med < max: 0 < 15 < 5881 IQR (CV) : 39.4 (2.6) |
333 distinct values | 0 (0.0%) |
|
| 81 | FATTY ACIDS, POLYUNSATURATED, 18:2 c,c n-6, LINOLEIC,
OCTADECADIENOIC [numeric] |
Mean (sd) : 2.3 (3.9) min < med < max: 0 < 2.3 < 74.6 IQR (CV) : 1.5 (1.7) |
1286 distinct values | 0 (0.0%) |
|
| 82 | FATTY ACIDS, POLYUNSATURATED, 20:3, EICOSATRIENOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 1.4 IQR (CV) : 0 (5.5) |
90 distinct values | 0 (0.0%) |
|
| 83 | FATTY ACIDS, POLYUNSATURATED, 18:3 c,c,c n-3 LINOLENIC,
OCTADECATRIENOIC [numeric] |
Mean (sd) : 0.2 (1.1) min < med < max: 0 < 0.1 < 53.4 IQR (CV) : 0.2 (5.6) |
620 distinct values | 0 (0.0%) |
|
| 84 | FATTY ACIDS, POLYUNSATURATED, 18:3 c,c,c n-6, g-LINOLENIC,
OCTADECATRIENOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 1 IQR (CV) : 0 (17.6) |
50 distinct values | 0 (0.0%) |
|
| 85 | BETA CRYPTOXANTHIN [numeric] |
Mean (sd) : 15.2 (152) min < med < max: 0 < 1 < 6252 IQR (CV) : 15.2 (10) |
129 distinct values | 0 (0.0%) |
|
| 86 | LYCOPENE [numeric] |
Mean (sd) : 220 (1390) min < med < max: 0 < 0 < 46260 IQR (CV) : 220 (6.3) |
191 distinct values | 0 (0.0%) |
|
| 87 | LUTEIN AND ZEAXANTHIN [numeric] |
Mean (sd) : 260 (1063) min < med < max: 0 < 104 < 19697 IQR (CV) : 260 (4.1) |
420 distinct values | 0 (0.0%) |
|
| 88 | FATTY ACIDS, POLYUNSATURATED, 20:3 n-6, EICOSATRIENOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 1.4 IQR (CV) : 0 (13.9) |
72 distinct values | 0 (0.0%) |
|
| 89 | FATTY ACIDS, POLYUNSATURATED, 20:4 n-6, ARACHIDONIC [numeric] |
Mean (sd) : 0 (0.1) min < med < max: 0 < 0 < 1.8 IQR (CV) : 0 (2) |
228 distinct values | 0 (0.0%) |
|
| 90 | FATTY ACIDS, POLYUNSATURATED, 20:3 n-3 EICOSATRIENOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 1 IQR (CV) : 0 (15.9) |
53 distinct values | 0 (0.0%) |
|
| 91 | VITAMIN B12, ADDED [numeric] |
Mean (sd) : 1 (5) min < med < max: 0 < 1 < 380 IQR (CV) : 0 (5.2) |
29 distinct values | 0 (0.0%) |
|
| 92 | ALPHA-TOCOPHEROL, ADDED [numeric] |
Mean (sd) : 0.1 (0.3) min < med < max: 0 < 0.1 < 16.9 IQR (CV) : 0 (3.4) |
12 distinct values | 0 (0.0%) |
|
| 93 | VITAMIN D2, ERGOCALCIFEROL [numeric] |
Mean (sd) : 0.3 (0.5) min < med < max: 0 < 0.3 < 28.1 IQR (CV) : 0 (1.5) |
23 distinct values | 0 (0.0%) |
|
| 94 | FATTY ACIDS, SATURATED, 4:0, BUTANOIC [numeric] |
Mean (sd) : 0 (0.1) min < med < max: 0 < 0 < 3.2 IQR (CV) : 0 (4.1) |
275 distinct values | 0 (0.0%) |
|
| 95 | FATTY ACIDS, SATURATED, 6:0, HEXANOIC [numeric] |
Mean (sd) : 0 (0.1) min < med < max: 0 < 0 < 2 IQR (CV) : 0 (4) |
225 distinct values | 0 (0.0%) |
|
| 96 | ALPHA CAROTENE [numeric] |
Mean (sd) : 40.8 (297) min < med < max: 0 < 1 < 14251 IQR (CV) : 40.8 (7.3) |
165 distinct values | 0 (0.0%) |
|
| 97 | FATTY ACIDS, MONOUNSATURATED, 22:1c, DOCOSENOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 1.1 IQR (CV) : 0 (4) |
101 distinct values | 0 (0.0%) |
|
| 98 | FATTY ACIDS, POLYUNSATURATED, 18:3i, LINOLENIC,
OCTADECATRIENOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 0.3 IQR (CV) : 0 (2.2) |
55 distinct values | 0 (0.0%) |
|
| 99 | FATTY ACIDS, MONOUNSATURATED, 22:1t, DOCOSENOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 0.1 IQR (CV) : 0 (12.8) |
17 distinct values | 0 (0.0%) |
|
| 100 | SUCROSE [numeric] |
Mean (sd) : 2 (5) min < med < max: 0 < 2 < 99.8 IQR (CV) : 2 (2.5) |
488 distinct values | 0 (0.0%) |
|
| 101 | GLUCOSE [numeric] |
Mean (sd) : 0.8 (1.7) min < med < max: 0 < 0.8 < 35.8 IQR (CV) : 0.8 (2.2) |
400 distinct values | 0 (0.0%) |
|
| 102 | FRUCTOSE [numeric] |
Mean (sd) : 0.7 (1.7) min < med < max: 0 < 0.7 < 55.6 IQR (CV) : 0.7 (2.4) |
388 distinct values | 0 (0.0%) |
|
| 103 | LACTOSE [numeric] |
Mean (sd) : 0.3 (0.8) min < med < max: 0 < 0.3 < 13.2 IQR (CV) : 0.3 (2.7) |
226 distinct values | 0 (0.0%) |
|
| 104 | MALTOSE [numeric] |
Mean (sd) : 0.2 (0.5) min < med < max: 0 < 0.2 < 16.4 IQR (CV) : 0.2 (2.6) |
218 distinct values | 0 (0.0%) |
|
| 105 | GALACTOSE [numeric] |
Mean (sd) : 0 (0.3) min < med < max: 0 < 0 < 19.9 IQR (CV) : 0 (9.5) |
54 distinct values | 0 (0.0%) |
|
| 106 | FATTY ACIDS, SATURATED, 20:0, EICOSANOIC [numeric] |
Mean (sd) : 0 (0.1) min < med < max: 0 < 0 < 4.6 IQR (CV) : 0 (2.7) |
184 distinct values | 0 (0.0%) |
|
| 107 | FATTY ACIDS, SATURATED, 22:0, DOCOSANOIC [numeric] |
Mean (sd) : 0 (0.1) min < med < max: 0 < 0 < 3.7 IQR (CV) : 0 (3.4) |
134 distinct values | 0 (0.0%) |
|
| 108 | FATTY ACIDS, MONOUNSATURATED, 14:1, TETRADECENOIC [numeric] |
Mean (sd) : 0 (0.1) min < med < max: 0 < 0 < 1.8 IQR (CV) : 0 (2.4) |
157 distinct values | 0 (0.0%) |
|
| 109 | FATTY ACIDS, MONOUNSATURATED, 20:1, EICOSENOIC [numeric] |
Mean (sd) : 0.1 (0.5) min < med < max: 0 < 0 < 15 IQR (CV) : 0.1 (5.3) |
366 distinct values | 0 (0.0%) |
|
| 110 | FATTY ACIDS, SATURATED, 15:0, PENTADECANOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 0.9 IQR (CV) : 0 (1.7) |
122 distinct values | 0 (0.0%) |
|
| 111 | FATTY ACIDS, SATURATED, 17:0, HEPTADECANOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 0.8 IQR (CV) : 0 (1.2) |
190 distinct values | 0 (0.0%) |
|
| 112 | FATTY ACIDS, SATURATED, 24:0, TETRACOSANOIC [numeric] |
Mean (sd) : 0 (0.1) min < med < max: 0 < 0 < 4.7 IQR (CV) : 0 (5.2) |
92 distinct values | 0 (0.0%) |
|
| 113 | STARCH [numeric] |
Mean (sd) : 4 (6.7) min < med < max: 0 < 4 < 73.3 IQR (CV) : 4 (1.7) |
361 distinct values | 0 (0.0%) |
|
| 114 | BETA-TOCOPHEROL [numeric] |
Mean (sd) : 0.1 (0.2) min < med < max: 0 < 0.1 < 10.5 IQR (CV) : 0 (1.9) |
66 distinct values | 0 (0.0%) |
|
| 115 | GAMMA-TOCOPHEROL [numeric] |
Mean (sd) : 2.3 (2.1) min < med < max: 0 < 2.3 < 65.2 IQR (CV) : 0 (0.9) |
275 distinct values | 0 (0.0%) |
|
| 116 | DELTA-TOCOPHEROL [numeric] |
Mean (sd) : 0.4 (0.5) min < med < max: 0 < 0.4 < 15.4 IQR (CV) : 0 (1.2) |
149 distinct values | 0 (0.0%) |
|
| 117 | FATTY ACIDS, MONOUNSATURATED, 16:1t, HEXADECENOIC [numeric] |
Mean (sd) : 0 (0.1) min < med < max: 0 < 0 < 6.1 IQR (CV) : 0 (10.8) |
74 distinct values | 0 (0.0%) |
|
| 118 | FATTY ACIDS, MONOUNSATURATED, 18:1t, OCTADECENOIC [numeric] |
Mean (sd) : 0.1 (0.4) min < med < max: 0 < 0.1 < 20.2 IQR (CV) : 0 (2.9) |
296 distinct values | 0 (0.0%) |
|
| 119 | FATTY ACIDS, POLYUNSATURATED, 18:2i, LINOLEIC, OCTADECADIENOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 2.3 IQR (CV) : 0 (1.8) |
141 distinct values | 0 (0.0%) |
|
| 120 | FATTY ACIDS, MONOUNSATURATED, 24:1c, TETRACOSENOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 0.6 IQR (CV) : 0 (4.1) |
46 distinct values | 0 (0.0%) |
|
| 121 | FATTY ACIDS, MONOUNSATURATED, 16:1c, HEXADECENOIC [numeric] |
Mean (sd) : 0.1 (0.2) min < med < max: 0 < 0.1 < 6.9 IQR (CV) : 0 (1.3) |
397 distinct values | 0 (0.0%) |
|
| 122 | FATTY ACIDS, POLYUNSATURATED, 20:2 c,c EICOSADIENOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 0.7 IQR (CV) : 0 (1.7) |
129 distinct values | 0 (0.0%) |
|
| 123 | FATTY ACIDS, MONOUNSATURATED, 18:1c, OCTADECENOIC [numeric] |
Mean (sd) : 4.7 (37.8) min < med < max: 0 < 4.7 < 2845 IQR (CV) : 0 (8.1) |
1067 distinct values | 0 (0.0%) |
|
| 124 | FATTY ACIDS, MONOUNSATURATED, 17:1, HEPTADECENOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 1.1 IQR (CV) : 0 (1.5) |
136 distinct values | 0 (0.0%) |
|
| 125 | FATTY ACIDS, TOTAL TRANS-MONOENOIC [numeric] |
Mean (sd) : 0.1 (0.4) min < med < max: 0 < 0.1 < 20.2 IQR (CV) : 0 (3.1) |
286 distinct values | 0 (0.0%) |
|
| 126 | FATTY ACIDS, MONOUNSATURATED, 15:1, PENTADECENOIC [numeric] |
Mean (sd) : 0 (0.1) min < med < max: 0 < 0 < 6 IQR (CV) : 0 (15) |
28 distinct values | 0 (0.0%) |
|
| 127 | FATTY ACIDS, POLYUNSATURATED, CONJUGATED, 18:2 cla, LINOLEIC,
OCTADECADIENOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 1.1 IQR (CV) : 0 (2.2) |
91 distinct values | 0 (0.0%) |
|
| 128 | FATTY ACIDS, POLYUNSATURATED, 22:4 n-6, DOCOSATETRAENOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 0.3 IQR (CV) : 0 (1.6) |
67 distinct values | 0 (0.0%) |
|
| 129 | FATTY ACIDS, TOTAL TRANS-POLYENOIC [numeric] |
Mean (sd) : 0 (0.1) min < med < max: 0 < 0 < 2.5 IQR (CV) : 0 (1.8) |
155 distinct values | 0 (0.0%) |
|
| 130 | CHOLINE, TOTAL [numeric] |
Mean (sd) : 39.1 (50.2) min < med < max: 0 < 39.1 < 2403 IQR (CV) : 20.4 (1.3) |
911 distinct values | 0 (0.0%) |
|
| 131 | BETAINE [numeric] |
Mean (sd) : 10.6 (13.8) min < med < max: 0 < 10.6 < 630 IQR (CV) : 0 (1.3) |
258 distinct values | 0 (0.0%) |
|
| 132 | FATTY ACIDS, POLYUNSATURATED, TOTAL OMEGA N-3 [numeric] |
Mean (sd) : 0.5 (1.4) min < med < max: 0 < 0.5 < 53.4 IQR (CV) : 0.3 (2.9) |
549 distinct values | 0 (0.0%) |
|
| 133 | FATTY ACIDS, POLYUNSATURATED, TOTAL OMEGA N-6 [numeric] |
Mean (sd) : 3.1 (13.8) min < med < max: 0 < 3.1 < 953 IQR (CV) : 1.7 (4.5) |
1056 distinct values | 0 (0.0%) |
|
| 134 | ASPARTAME [numeric] |
Mean (sd) : 51.1 (49.6) min < med < max: 0 < 51.1 < 3722 IQR (CV) : 0 (1) |
0.00 : 82 ( 1.4%) 37.00 : 1 ( 0.0%) 42.00 : 1 ( 0.0%) 51.15!: 5603 (98.5%) 52.00 : 1 ( 0.0%) 597.00 : 1 ( 0.0%) 3722.00 : 1 ( 0.0%) ! rounded |
0 (0.0%) |
|
| 135 | TOTAL PLANT STEROL [numeric] |
Mean (sd) : 26.4 (28.2) min < med < max: 0 < 26.4 < 1190 IQR (CV) : 0 (1.1) |
118 distinct values | 0 (0.0%) |
|
| 136 | MANNITOL [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 0.2 IQR (CV) : 0 (8.6) |
4 distinct values | 0 (0.0%) |
|
| 137 | SORBITOL [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 2.3 IQR (CV) : 0 (6.9) |
0.00 : 1375 (24.2%) 0.01!: 4304 (75.6%) 0.10 : 1 ( 0.0%) 0.20 : 1 ( 0.0%) 0.30 : 1 ( 0.0%) 0.60 : 2 ( 0.0%) 0.80 : 1 ( 0.0%) 1.00 : 3 ( 0.1%) 2.10 : 1 ( 0.0%) 2.30 : 1 ( 0.0%) ! rounded |
0 (0.0%) |
|
| 138 | STIGMASTEROL [numeric] |
Mean (sd) : 1.3 (1.8) min < med < max: 0 < 1.3 < 59 IQR (CV) : 0 (1.4) |
27 distinct values | 0 (0.0%) |
|
| 139 | TOTAL MONOSACCARIDES [numeric] |
Mean (sd) : 0.8 (1.5) min < med < max: 0 < 0.8 < 30.6 IQR (CV) : 0.7 (1.9) |
268 distinct values | 0 (0.0%) |
|
| 140 | TOTAL DISACCHARIDES [numeric] |
Mean (sd) : 1.5 (2.8) min < med < max: 0 < 1.5 < 47.2 IQR (CV) : 1.3 (1.9) |
296 distinct values | 0 (0.0%) |
|
| 141 | BETA-SITOSTEROL [numeric] |
Mean (sd) : 14 (14) min < med < max: 0 < 14 < 621 IQR (CV) : 0 (1) |
55 distinct values | 0 (0.0%) |
|
| 142 | HYDROXYPROLINE [numeric] |
Mean (sd) : 0.1 (0) min < med < max: 0 < 0.1 < 0.7 IQR (CV) : 0 (0.4) |
198 distinct values | 0 (0.0%) |
|
| 143 | FATTY ACIDS, SATURATED, 13:0 TRIDECANOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 0.1 IQR (CV) : 0 (3) |
11 distinct values | 0 (0.0%) |
|
| 144 | FATTY ACIDS, POLYUNSATURATED, 21:5 [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 0.3 IQR (CV) : 0 (4.7) |
13 distinct values | 0 (0.0%) |
|
| 145 | FATTY ACIDS, MONOUNSATURATED, 24:1undifferentiated,
TETRACOSENOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 3 IQR (CV) : 0 (8.9) |
33 distinct values | 0 (0.0%) |
|
| 146 | FATTY ACIDS, POLYUNSATURATED, 22:3, [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 0.1 IQR (CV) : 0 (5.5) |
11 distinct values | 0 (0.0%) |
|
| 147 | FATTY ACIDS, POLYUNSATURATED, 22:2, DOCOSADIENOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 0 IQR (CV) : 0 (6.5) |
5 distinct values | 0 (0.0%) |
|
| 148 | FATTY ACIDS, POLYUNSATURATED, 18:2t,t , OCTADECADIENENOIC [numeric] |
Mean (sd) : 0 (0) min < med < max: 0 < 0 < 0.5 IQR (CV) : 0 (2.5) |
60 distinct values | 0 (0.0%) |
|
| 149 | CAMPESTEROL [numeric] |
Mean (sd) : 3.8 (3.6) min < med < max: 0 < 3.8 < 189 IQR (CV) : 0 (0.9) |
28 distinct values | 0 (0.0%) |
|
| 150 | BIOTIN [numeric] |
Mean (sd) : 6.1 (0.9) min < med < max: 0 < 6.1 < 31.6 IQR (CV) : 0 (0.1) |
72 distinct values | 0 (0.0%) |
|
| 151 | OXALIC ACID [numeric] |
Mean (sd) : 0.3 (0) min < med < max: 0 < 0.3 < 1.7 IQR (CV) : 0 (0.1) |
28 distinct values | 0 (0.0%) |
data.frame. R package version 1.14.6, https://CRAN.R-project.org/package=data.table.